Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 38
Фильтр
Добавить фильтры

Годовой диапазон
1.
N Engl J Med ; 388(16): 1451-1464, 2023 Apr 20.
Статья в английский | MEDLINE | ID: covidwho-2297440

Реферат

BACKGROUND: Whether vaccination during pregnancy could reduce the burden of respiratory syncytial virus (RSV)-associated lower respiratory tract illness in newborns and infants is uncertain. METHODS: In this phase 3, double-blind trial conducted in 18 countries, we randomly assigned, in a 1:1 ratio, pregnant women at 24 through 36 weeks' gestation to receive a single intramuscular injection of 120 µg of a bivalent RSV prefusion F protein-based (RSVpreF) vaccine or placebo. The two primary efficacy end points were medically attended severe RSV-associated lower respiratory tract illness and medically attended RSV-associated lower respiratory tract illness in infants within 90, 120, 150, and 180 days after birth. A lower boundary of the confidence interval for vaccine efficacy (99.5% confidence interval [CI] at 90 days; 97.58% CI at later intervals) greater than 20% was considered to meet the success criterion for vaccine efficacy with respect to the primary end points. RESULTS: At this prespecified interim analysis, the success criterion for vaccine efficacy was met with respect to one primary end point. Overall, 3682 maternal participants received vaccine and 3676 received placebo; 3570 and 3558 infants, respectively, were evaluated. Medically attended severe lower respiratory tract illness occurred within 90 days after birth in 6 infants of women in the vaccine group and 33 infants of women in the placebo group (vaccine efficacy, 81.8%; 99.5% CI, 40.6 to 96.3); 19 cases and 62 cases, respectively, occurred within 180 days after birth (vaccine efficacy, 69.4%; 97.58% CI, 44.3 to 84.1). Medically attended RSV-associated lower respiratory tract illness occurred within 90 days after birth in 24 infants of women in the vaccine group and 56 infants of women in the placebo group (vaccine efficacy, 57.1%; 99.5% CI, 14.7 to 79.8); these results did not meet the statistical success criterion. No safety signals were detected in maternal participants or in infants and toddlers up to 24 months of age. The incidences of adverse events reported within 1 month after injection or within 1 month after birth were similar in the vaccine group (13.8% of women and 37.1% of infants) and the placebo group (13.1% and 34.5%, respectively). CONCLUSIONS: RSVpreF vaccine administered during pregnancy was effective against medically attended severe RSV-associated lower respiratory tract illness in infants, and no safety concerns were identified. (Funded by Pfizer; MATISSE ClinicalTrials.gov number, NCT04424316.).


Тема - темы
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Tract Infections , Female , Humans , Infant , Infant, Newborn , Pregnancy , Antibodies, Viral , Communicable Diseases/therapy , Double-Blind Method , Injections, Intramuscular , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/adverse effects , Respiratory Syncytial Virus Vaccines/therapeutic use , Respiratory Syncytial Viruses , Treatment Outcome , Vaccination/adverse effects , Vaccination/methods , Vaccine Efficacy , Vaccines, Combined/administration & dosage , Vaccines, Combined/adverse effects , Vaccines, Combined/therapeutic use , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control
2.
N Engl J Med ; 388(16): 1465-1477, 2023 Apr 20.
Статья в английский | MEDLINE | ID: covidwho-2305422

Реферат

BACKGROUND: Respiratory syncytial virus (RSV) infection causes considerable illness in older adults. The efficacy and safety of an investigational bivalent RSV prefusion F protein-based (RSVpreF) vaccine in this population are unknown. METHODS: In this ongoing, phase 3 trial, we randomly assigned, in a 1:1 ratio, adults (≥60 years of age) to receive a single intramuscular injection of RSVpreF vaccine at a dose of 120 µg (RSV subgroups A and B, 60 µg each) or placebo. The two primary end points were vaccine efficacy against seasonal RSV-associated lower respiratory tract illness with at least two or at least three signs or symptoms. The secondary end point was vaccine efficacy against RSV-associated acute respiratory illness. RESULTS: At the interim analysis (data-cutoff date, July 14, 2022), 34,284 participants had received RSVpreF vaccine (17,215 participants) or placebo (17,069 participants). RSV-associated lower respiratory tract illness with at least two signs or symptoms occurred in 11 participants in the vaccine group (1.19 cases per 1000 person-years of observation) and 33 participants in the placebo group (3.58 cases per 1000 person-years of observation) (vaccine efficacy, 66.7%; 96.66% confidence interval [CI], 28.8 to 85.8); 2 cases (0.22 cases per 1000 person-years of observation) and 14 cases (1.52 cases per 1000 person-years of observation), respectively, occurred with at least three signs or symptoms (vaccine efficacy, 85.7%; 96.66% CI, 32.0 to 98.7). RSV-associated acute respiratory illness occurred in 22 participants in the vaccine group (2.38 cases per 1000 person-years of observation) and 58 participants in the placebo group (6.30 cases per 1000 person-years of observation) (vaccine efficacy, 62.1%; 95% CI, 37.1 to 77.9). The incidence of local reactions was higher with vaccine (12%) than with placebo (7%); the incidences of systemic events were similar (27% and 26%, respectively). Similar rates of adverse events through 1 month after injection were reported (vaccine, 9.0%; placebo, 8.5%), with 1.4% and 1.0%, respectively, considered by the investigators to be injection-related. Severe or life-threatening adverse events were reported in 0.5% of vaccine recipients and 0.4% of placebo recipients. Serious adverse events were reported in 2.3% of participants in each group through the data-cutoff date. CONCLUSIONS: RSVpreF vaccine prevented RSV-associated lower respiratory tract illness and RSV-associated acute respiratory illness in adults (≥60 years of age), without evident safety concerns. (Funded by Pfizer; RENOIR ClinicalTrials.gov number, NCT05035212; EudraCT number, 2021-003693-31.).


Тема - темы
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Tract Infections , Aged , Humans , Antibodies, Viral , Double-Blind Method , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/adverse effects , Respiratory Syncytial Virus Vaccines/therapeutic use , Vaccines, Combined/administration & dosage , Vaccines, Combined/adverse effects , Vaccines, Combined/therapeutic use , Vaccine Efficacy , Treatment Outcome , Middle Aged , Injections, Intramuscular , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control
3.
Proc Natl Acad Sci U S A ; 120(11): e2219523120, 2023 03 14.
Статья в английский | MEDLINE | ID: covidwho-2262238

Реферат

The continuous evolution of SARS-CoV-2 variants complicates efforts to combat the ongoing pandemic, underscoring the need for a dynamic platform for the rapid development of pan-viral variant therapeutics. Oligonucleotide therapeutics are enhancing the treatment of numerous diseases with unprecedented potency, duration of effect, and safety. Through the systematic screening of hundreds of oligonucleotide sequences, we identified fully chemically stabilized siRNAs and ASOs that target regions of the SARS-CoV-2 genome conserved in all variants of concern, including delta and omicron. We successively evaluated candidates in cellular reporter assays, followed by viral inhibition in cell culture, with eventual testing of leads for in vivo antiviral activity in the lung. Previous attempts to deliver therapeutic oligonucleotides to the lung have met with only modest success. Here, we report the development of a platform for identifying and generating potent, chemically modified multimeric siRNAs bioavailable in the lung after local intranasal and intratracheal delivery. The optimized divalent siRNAs showed robust antiviral activity in human cells and mouse models of SARS-CoV-2 infection and represent a new paradigm for antiviral therapeutic development for current and future pandemics.


Тема - темы
COVID-19 , Humans , Animals , Mice , RNA, Small Interfering/genetics , COVID-19/therapy , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Oligonucleotides , Lung
4.
J Pediatric Infect Dis Soc ; 12(4): 234-238, 2023 Apr 28.
Статья в английский | MEDLINE | ID: covidwho-2281524

Реферат

In this ongoing study, substantially increased ancestral SARS-CoV-2 neutralizing responses were observed 1 month after a third 10-µg BNT162b2 dose given to 5 to 11-year olds versus neutralizing responses post-dose 2. After dose 3, increased neutralizing responses against Omicron BA.1 and BA.4/BA.5 strains were also observed. The safety/tolerability profile was acceptable. (NCT04816643).


Тема - темы
BNT162 Vaccine , COVID-19 , Humans , Antibodies, Viral , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2
5.
Proc Natl Acad Sci U S A ; 119(44): e2211194119, 2022 11.
Статья в английский | MEDLINE | ID: covidwho-2288599

Реферат

Pre-messenger RNA splicing is initiated with the recognition of a single-nucleotide intronic branchpoint (BP) within a BP motif by spliceosome elements. Forty-eight rare variants in 43 human genes have been reported to alter splicing and cause disease by disrupting BP. However, until now, no computational approach was available to efficiently detect such variants in massively parallel sequencing data. We established a comprehensive human genome-wide BP database by integrating existing BP data and generating new BP data from RNA sequencing of lariat debranching enzyme DBR1-mutated patients and from machine-learning predictions. We characterized multiple features of BP in major and minor introns and found that BP and BP-2 (two nucleotides upstream of BP) positions exhibit a lower rate of variation in human populations and higher evolutionary conservation than the intronic background, while being comparable to the exonic background. We developed BPHunter as a genome-wide computational approach to systematically and efficiently detect intronic variants that may disrupt BP recognition. BPHunter retrospectively identified 40 of the 48 known pathogenic BP variants, in which we summarized a strategy for prioritizing BP variant candidates. The remaining eight variants all create AG-dinucleotides between the BP and acceptor site, which is the likely reason for missplicing. We demonstrated the practical utility of BPHunter prospectively by using it to identify a novel germline heterozygous BP variant of STAT2 in a patient with critical COVID-19 pneumonia and a novel somatic intronic 59-nucleotide deletion of ITPKB in a lymphoma patient, both of which were validated experimentally. BPHunter is publicly available from https://hgidsoft.rockefeller.edu/BPHunter and https://github.com/casanova-lab/BPHunter.


Тема - темы
COVID-19 , Humans , Introns/genetics , Retrospective Studies , COVID-19/genetics , RNA Splicing/genetics , Nucleotides
6.
N Engl J Med ; 388(7): 621-634, 2023 02 16.
Статья в английский | MEDLINE | ID: covidwho-2243580

Реферат

BACKGROUND: Safe and effective vaccines against coronavirus disease 2019 (Covid-19) are urgently needed in young children. METHODS: We conducted a phase 1 dose-finding study and are conducting an ongoing phase 2-3 safety, immunogenicity, and efficacy trial of the BNT162b2 vaccine in healthy children 6 months to 11 years of age. We present results for children 6 months to less than 2 years of age and those 2 to 4 years of age through the data-cutoff dates (April 29, 2022, for safety and immunogenicity and June 17, 2022, for efficacy). In the phase 2-3 trial, participants were randomly assigned (in a 2:1 ratio) to receive two 3-µg doses of BNT162b2 or placebo. On the basis of preliminary immunogenicity results, a third 3-µg dose (≥8 weeks after dose 2) was administered starting in January 2022, which coincided with the emergence of the B.1.1.529 (omicron) variant. Immune responses at 1 month after doses 2 and 3 in children 6 months to less than 2 years of age and those 2 to 4 years of age were immunologically bridged to responses after dose 2 in persons 16 to 25 years of age who received 30 µg of BNT162b2 in the pivotal trial. RESULTS: During the phase 1 dose-finding study, two doses of BNT162b2 were administered 21 days apart to 16 children 6 months to less than 2 years of age (3-µg dose) and 48 children 2 to 4 years of age (3-µg or 10-µg dose). The 3-µg dose level was selected for the phase 2-3 trial; 1178 children 6 months to less than 2 years of age and 1835 children 2 to 4 years of age received BNT162b2, and 598 and 915, respectively, received placebo. Immunobridging success criteria for the geometric mean ratio and seroresponse at 1 month after dose 3 were met in both age groups. BNT162b2 reactogenicity events were mostly mild to moderate, with no grade 4 events. Low, similar incidences of fever were reported after receipt of BNT162b2 (7% among children 6 months to <2 years of age and 5% among those 2 to 4 years of age) and placebo (6 to 7% among children 6 months to <2 years of age and 4 to 5% among those 2 to 4 years of age). The observed overall vaccine efficacy against symptomatic Covid-19 in children 6 months to 4 years of age was 73.2% (95% confidence interval, 43.8 to 87.6) from 7 days after dose 3 (on the basis of 34 cases). CONCLUSIONS: A three-dose primary series of 3-µg BNT162b2 was safe, immunogenic, and efficacious in children 6 months to 4 years of age. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04816643.).


Тема - темы
BNT162 Vaccine , COVID-19 , Adolescent , Child , Child, Preschool , Humans , Infant , Young Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/adverse effects , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Immunoglobulin G/blood , Immunoglobulin G/immunology , Vaccines/adverse effects , Vaccines/therapeutic use , Immunogenicity, Vaccine , Treatment Outcome , Vaccine Efficacy
8.
N Engl J Med ; 388(3): 214-227, 2023 01 19.
Статья в английский | MEDLINE | ID: covidwho-2186511

Реферат

BACKGROUND: The emergence of immune-escape variants of severe acute respiratory syndrome coronavirus 2 warrants the use of sequence-adapted vaccines to provide protection against coronavirus disease 2019. METHODS: In an ongoing phase 3 trial, adults older than 55 years who had previously received three 30-µg doses of the BNT162b2 vaccine were randomly assigned to receive 30 µg or 60 µg of BNT162b2, 30 µg or 60 µg of monovalent B.1.1.529 (omicron) BA.1-adapted BNT162b2 (monovalent BA.1), or 30 µg (15 µg of BNT162b2 + 15 µg of monovalent BA.1) or 60 µg (30 µg of BNT162b2 + 30 µg of monovalent BA.1) of BA.1-adapted BNT162b2 (bivalent BA.1). Primary objectives were to determine superiority (with respect to 50% neutralizing titer [NT50] against BA.1) and noninferiority (with respect to seroresponse) of the BA.1-adapted vaccines to BNT162b2 (30 µg). A secondary objective was to determine noninferiority of bivalent BA.1 to BNT162b2 (30 µg) with respect to neutralizing activity against the ancestral strain. Exploratory analyses assessed immune responses against omicron BA.4, BA.5, and BA.2.75 subvariants. RESULTS: A total of 1846 participants underwent randomization. At 1 month after vaccination, bivalent BA.1 (30 µg and 60 µg) and monovalent BA.1 (60 µg) showed neutralizing activity against BA.1 superior to that of BNT162b2 (30 µg), with NT50 geometric mean ratios (GMRs) of 1.56 (95% confidence interval [CI], 1.17 to 2.08), 1.97 (95% CI, 1.45 to 2.68), and 3.15 (95% CI, 2.38 to 4.16), respectively. Bivalent BA.1 (both doses) and monovalent BA.1 (60 µg) were also noninferior to BNT162b2 (30 µg) with respect to seroresponse against BA.1; between-group differences ranged from 10.9 to 29.1 percentage points. Bivalent BA.1 (either dose) was noninferior to BNT162b2 (30 µg) with respect to neutralizing activity against the ancestral strain, with NT50 GMRs of 0.99 (95% CI, 0.82 to 1.20) and 1.30 (95% CI, 1.07 to 1.58), respectively. BA.4-BA.5 and BA.2.75 neutralizing titers were numerically higher with 30-µg bivalent BA.1 than with 30-µg BNT162b2. The safety profile of either dose of monovalent or bivalent BA.1 was similar to that of BNT162b2 (30 µg). Adverse events were more common in the 30-µg monovalent-BA.1 (8.5%) and 60-µg bivalent-BA.1 (10.4%) groups than in the other groups (3.6 to 6.6%). CONCLUSIONS: The candidate monovalent or bivalent omicron BA.1-adapted vaccines had a safety profile similar to that of BNT162b2 (30 µg), induced substantial neutralizing responses against ancestral and omicron BA.1 strains, and, to a lesser extent, neutralized BA.4, BA.5, and BA.2.75 strains. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04955626.).


Тема - темы
BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Vaccines, Combined , Humans , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/adverse effects , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/genetics , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccination , Vaccines, Combined/therapeutic use , Middle Aged
9.
Emerg Microbes Infect ; 11(1): 1828-1832, 2022 Dec.
Статья в английский | MEDLINE | ID: covidwho-1960866

Реферат

Distinct SARS-CoV-2 Omicron sublineages have evolved showing increased fitness and immune evasion than the original Omicron variant BA.1. Here, we report the neutralization activity of sera from BNT162b2 vaccinated individuals or unimmunized Omicron BA.1-infected individuals against Omicron sublineages and "Deltacron" variant (XD). BNT162b2 post-dose 3 immune sera neutralized USA-WA1/2020, Omicron BA.1-, BA.2-, BA.2.12.1-, BA.3-, BA.4/5-, and XD-spike SARS-CoV-2s with geometric mean titres (GMTs) of 1335, 393, 298, 315, 216, 103, and 301, respectively; thus, BA.4/5 SARS-CoV-2 spike variant showed the highest propensity to evade vaccine neutralization compared to the original Omicron variants BA.1. BA.1-convalescent sera neutralized USA-WA1/2020, BA.1-, BA.2-, BA.2.12.1-, BA.3-, BA.4/5-, and Deltacron-spike SARS-CoV-2s with GMTs of 15, 430, 110, 109, 102, 25, and 284, respectively. The unique mutation F486V in the BA.4/5 spike contributes to the increased evasion of antibody neutralization by sublineage BA.4/5. The low neutralization titres of vaccinated sera or convalescent sera from BA.1 infected individuals against the emerging and rapidly spreading Omicron BA.4/5 variants provide important results for consideration in the selection of an updated vaccine in the current Omicron wave.Trial registration: ClinicalTrials.gov; identifier: NCT04368728.


Тема - темы
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19/therapy , Humans , Immunization, Passive , Membrane Glycoproteins/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins , COVID-19 Serotherapy
10.
Nat Commun ; 13(1): 3602, 2022 06 23.
Статья в английский | MEDLINE | ID: covidwho-1900485

Реферат

The newly emerged Omicron SARS-CoV-2 has several distinct sublineages including BA.1, BA.2, and BA.3. BA.1 accounts for the initial surge and is being replaced by BA.2, whereas BA.3 is at a low prevalence at this time. Here we report the neutralization of BNT162b2-vaccinated sera (collected 1 month after dose 3) against the three Omicron sublineages. To facilitate the neutralization testing, we have engineered the complete BA.1, BA.2, or BA.3 spike into an mNeonGreen USA-WA1/2020 SRAS-CoV-2. All BNT162b2-vaccinated sera neutralize USA-WA1/2020, BA.1-, BA.2-, and BA.3-spike SARS-CoV-2s with titers of >20; the neutralization geometric mean titers (GMTs) against the four viruses are 1211, 336, 300, and 190, respectively. Thus, the BA.1-, BA.2-, and BA.3-spike SARS-CoV-2s are 3.6-, 4.0-, and 6.4-fold less efficiently neutralized than the USA-WA1/2020, respectively. Our data have implications in vaccine strategy and understanding the biology of Omicron sublineages.


Тема - темы
COVID-19 , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , SARS-CoV-2
11.
Front Med (Lausanne) ; 9: 796109, 2022.
Статья в английский | MEDLINE | ID: covidwho-1847182

Реферат

Background: Dysregulation of complement system is thought to be a major player in development of multi-organ damage and adverse outcomes in patients with coronavirus disease 2019 (COVID-19). This study aimed to examine associations between complement system activity and development of severe acute kidney injury (AKI) among hospitalized COVID-19 patients. Materials and Methods: In this multicenter, international study, complement as well as inflammatory and thrombotic parameters were analyzed in COVID-19 patients requiring hospitalization at one US and two Hungarian centers. The primary endpoint was development of severe AKI defined by KDIGO stage 2+3 criteria, while the secondary endpoint was need for renal replacement therapy (RRT). Complement markers with significant associations with endpoints were then correlated with a panel of inflammatory and thrombotic biomarkers and assessed for independent association with outcome measures using logistic regression. Results: A total of 131 hospitalized COVID-19 patients (median age 66 [IQR, 54-75] years; 54.2% males) were enrolled, 33 from the US, and 98 from Hungary. There was a greater prevalence of complement over-activation and consumption in those who developed severe AKI and need for RRT during hospitalization. C3a/C3 ratio was increased in groups developing severe AKI (3.29 vs. 1.71; p < 0.001) and requiring RRT (3.42 vs. 1.79; p < 0.001) in each cohort. Decrease in alternative and classical pathway activity, and consumption of C4 below reference range, as well as elevation of complement activation marker C3a above the normal was more common in patients progressing to severe AKI. In the Hungarian cohort, each standard deviation increase in C3a (SD = 210.1) was independently associated with 89.7% increased odds of developing severe AKI (95% CI, 7.6-234.5%). Complement was extensively correlated with an array of inflammatory biomarkers and a prothrombotic state. Conclusion: Consumption and dysregulation of complement system is associated with development of severe AKI in COVID-19 patients and could represent a promising therapeutic target for reducing thrombotic microangiopathy in SARS-CoV-2 infection.

12.
NPJ Vaccines ; 7(1): 41, 2022 Apr 08.
Статья в английский | MEDLINE | ID: covidwho-1783982

Реферат

BNT162b2-elicited human sera neutralize the currently dominant Delta SARS-CoV-2 variant. Here, we report the ability of 20 human sera, drawn 2 or 4 weeks after two doses of BNT162b2, to neutralize USA-WA1/2020 SARS-CoV-2 bearing variant spikes from Delta plus (Delta-AY.1, Delta-AY.2), Delta-∆144 (Delta with the Y144 deletion of the Alpha variant), Lambda, B.1.1.519, Theta, and Mu lineage viruses. Geometric mean plaque reduction neutralization titers against Delta-AY.1, Delta-AY.2, and Mu viruses are slightly lower than against USA-WA1/2020, but all sera neutralize the variant viruses to titers of ≥80, and neutralization titers against the Delta-∆144, Lambda, B.1.1.519 and Theta variants not significantly reduced relative to those against USA-WA1/2020. The susceptibility of Delta plus, Lambda, B.1.1.519, Theta, Mu, and other variants to neutralization by the sera indicates that antigenic change has not led to virus escape from vaccine-elicited neutralizing antibodies and supports ongoing mass immunization with BNT162b2 to control the variants and to minimize the emergence of new variants.

13.
N Engl J Med ; 386(20): 1910-1921, 2022 05 19.
Статья в английский | MEDLINE | ID: covidwho-1758446

Реферат

BACKGROUND: Active immunization with the BNT162b2 vaccine (Pfizer-BioNTech) has been a critical mitigation tool against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the coronavirus disease 2019 (Covid-19) pandemic. In light of reports of waning protection occurring 6 months after the primary two-dose vaccine series, data are needed on the safety and efficacy of offering a third (booster) dose in persons 16 years of age or older. METHODS: In this ongoing, placebo-controlled, randomized, phase 3 trial, we assigned participants who had received two 30-µg doses of the BNT162b2 vaccine at least 6 months earlier to be injected with a third dose of the BNT162b2 vaccine or with placebo. We assessed vaccine safety and efficacy against Covid-19 starting 7 days after the third dose. RESULTS: A total of 5081 participants received a third BNT162b2 dose and 5044 received placebo. The median interval between dose 2 and dose 3 was 10.8 months in the vaccine group and 10.7 months in the placebo group; the median follow-up was 2.5 months. Local and systemic reactogenicity events from the third dose were generally of low grade. No new safety signals were identified, and no cases of myocarditis or pericarditis were reported. Among the participants without evidence of previous SARS-CoV-2 infection who could be evaluated, Covid-19 with onset at least 7 days after dose 3 was observed in 6 participants in the vaccine group and in 123 participants in the placebo group, which corresponded to a relative vaccine efficacy of 95.3% (95% confidence interval, 89.5 to 98.3). CONCLUSIONS: A third dose of the BNT162b2 vaccine administered a median of 10.8 months after the second dose provided 95.3% efficacy against Covid-19 as compared with two doses of the BNT162b2 vaccine during a median follow-up of 2.5 months. (Funded by BioNTech and Pfizer; C4591031 ClinicalTrials.gov number, NCT04955626.).


Тема - темы
BNT162 Vaccine , COVID-19 , Immunization, Secondary , BNT162 Vaccine/adverse effects , BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Humans , Immunization, Secondary/adverse effects , Pandemics , SARS-CoV-2 , Treatment Outcome
14.
Cell Host Microbe ; 30(4): 485-488.e3, 2022 04 13.
Статья в английский | MEDLINE | ID: covidwho-1693797

Реферат

Two doses of the BNT162b2 mRNA vaccine are highly effective against SARS-CoV-2. Here, we tested the antibody neutralization against Omicron SARS-CoV-2 after 2 and 3 doses of BNT162b2. Serum from vaccinated individuals was serially tested for its ability to neutralize wild-type SARS-CoV-2 (USA-WA1/2020) and an engineered USA-WA1/2020 bearing the Omicron spike glycoprotein. At 2 or 4 weeks post dose 2, the neutralization geometric mean titers (GMTs) against the wild-type and Omicron-spike viruses were 511 and 20, respectively; at 1 month post dose 3, the neutralization GMTs increased to 1,342 and 336; and at 4 months post dose 3, the neutralization GMTs decreased to 820 and 171. The data support a 3-dose vaccination strategy and provide a glimpse into the durability of the neutralization response against Omicron.


Тема - темы
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
15.
IUCrJ ; 7(Pt 6)2020 Sep 29.
Статья в английский | MEDLINE | ID: covidwho-1546126

Реферат

Dexamethasone, a widely used corticosteroid, has recently been reported as the first drug to increase the survival chances of patients with severe COVID-19. Therapeutic agents, including dexamethasone, are mostly transported through the body by binding to serum albumin. Here, the first structure of serum albumin in complex with dexamethasone is reported. Dexamethasone binds to drug site 7, which is also the binding site for commonly used nonsteroidal anti-inflammatory drugs and testosterone, suggesting potentially problematic binding competition. This study bridges structural findings with an analysis of publicly available clinical data from Wuhan and suggests that an adjustment of the dexamethasone regimen should be further investigated as a strategy for patients affected by two major COVID-19 risk factors: low albumin levels and diabetes.

16.
N Engl J Med ; 386(1): 35-46, 2022 01 06.
Статья в английский | MEDLINE | ID: covidwho-1506999

Реферат

BACKGROUND: Safe, effective vaccines against coronavirus disease 2019 (Covid-19) are urgently needed in children younger than 12 years of age. METHODS: A phase 1, dose-finding study and an ongoing phase 2-3 randomized trial are being conducted to investigate the safety, immunogenicity, and efficacy of two doses of the BNT162b2 vaccine administered 21 days apart in children 6 months to 11 years of age. We present results for 5-to-11-year-old children. In the phase 2-3 trial, participants were randomly assigned in a 2:1 ratio to receive two doses of either the BNT162b2 vaccine at the dose level identified during the open-label phase 1 study or placebo. Immune responses 1 month after the second dose of BNT162b2 were immunologically bridged to those in 16-to-25-year-olds from the pivotal trial of two 30-µg doses of BNT162b2. Vaccine efficacy against Covid-19 at 7 days or more after the second dose was assessed. RESULTS: During the phase 1 study, a total of 48 children 5 to 11 years of age received 10 µg, 20 µg, or 30 µg of the BNT162b2 vaccine (16 children at each dose level). On the basis of reactogenicity and immunogenicity, a dose level of 10 µg was selected for further study. In the phase 2-3 trial, a total of 2268 children were randomly assigned to receive the BNT162b2 vaccine (1517 children) or placebo (751 children). At data cutoff, the median follow-up was 2.3 months. In the 5-to-11-year-olds, as in other age groups, the BNT162b2 vaccine had a favorable safety profile. No vaccine-related serious adverse events were noted. One month after the second dose, the geometric mean ratio of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing titers in 5-to-11-year-olds to those in 16-to-25-year-olds was 1.04 (95% confidence interval [CI], 0.93 to 1.18), a ratio meeting the prespecified immunogenicity success criterion (lower bound of two-sided 95% CI, >0.67; geometric mean ratio point estimate, ≥0.8). Covid-19 with onset 7 days or more after the second dose was reported in three recipients of the BNT162b2 vaccine and in 16 placebo recipients (vaccine efficacy, 90.7%; 95% CI, 67.7 to 98.3). CONCLUSIONS: A Covid-19 vaccination regimen consisting of two 10-µg doses of BNT162b2 administered 21 days apart was found to be safe, immunogenic, and efficacious in children 5 to 11 years of age. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04816643.).

17.
IUCrJ ; 8(Pt 6)2021 Sep 28.
Статья в английский | MEDLINE | ID: covidwho-1455435

Реферат

Metal binding sites, antigen epitopes and drug binding sites are the hotspots in viral proteins that control how viruses interact with their hosts. virusMED (virus Metal binding sites, Epitopes and Drug binding sites) is a rich internet application based on a database of atomic interactions around hotspots in 7041 experimentally determined viral protein structures. 25306 hotspots from 805 virus strains from 75 virus families were characterized, including influenza, HIV-1 and SARS-CoV-2 viruses. Just as Google Maps organizes and annotates points of interest, virusMED presents the positions of individual hotspots on each viral protein and creates an atlas upon which newly characterized functional sites can be placed as they are being discovered. virusMED contains an extensive set of annotation tags about the virus species and strains, viral hosts, viral proteins, metal ions, specific antibodies and FDA-approved drugs, which permits rapid screening of hotspots on viral proteins tailored to a particular research problem. The virusMED portal (https://virusmed.biocloud.top) can serve as a window to a valuable resource for many areas of virus research and play a critical role in the rational design of new preventative and therapeutic agents targeting viral infections.

18.
N Engl J Med ; 385(19): 1761-1773, 2021 11 04.
Статья в английский | MEDLINE | ID: covidwho-1410390

Реферат

BACKGROUND: BNT162b2 is a lipid nanoparticle-formulated, nucleoside-modified RNA vaccine encoding a prefusion-stabilized, membrane-anchored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) full-length spike protein. BNT162b2 is highly efficacious against coronavirus disease 2019 (Covid-19) and is currently approved, conditionally approved, or authorized for emergency use worldwide. At the time of initial authorization, data beyond 2 months after vaccination were unavailable. METHODS: In an ongoing, placebo-controlled, observer-blinded, multinational, pivotal efficacy trial, we randomly assigned 44,165 participants 16 years of age or older and 2264 participants 12 to 15 years of age to receive two 30-µg doses, at 21 days apart, of BNT162b2 or placebo. The trial end points were vaccine efficacy against laboratory-confirmed Covid-19 and safety, which were both evaluated through 6 months after vaccination. RESULTS: BNT162b2 continued to be safe and have an acceptable adverse-event profile. Few participants had adverse events leading to withdrawal from the trial. Vaccine efficacy against Covid-19 was 91.3% (95% confidence interval [CI], 89.0 to 93.2) through 6 months of follow-up among the participants without evidence of previous SARS-CoV-2 infection who could be evaluated. There was a gradual decline in vaccine efficacy. Vaccine efficacy of 86 to 100% was seen across countries and in populations with diverse ages, sexes, race or ethnic groups, and risk factors for Covid-19 among participants without evidence of previous infection with SARS-CoV-2. Vaccine efficacy against severe disease was 96.7% (95% CI, 80.3 to 99.9). In South Africa, where the SARS-CoV-2 variant of concern B.1.351 (or beta) was predominant, a vaccine efficacy of 100% (95% CI, 53.5 to 100) was observed. CONCLUSIONS: Through 6 months of follow-up and despite a gradual decline in vaccine efficacy, BNT162b2 had a favorable safety profile and was highly efficacious in preventing Covid-19. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04368728.).


Тема - темы
COVID-19 Vaccines , COVID-19/prevention & control , Immunogenicity, Vaccine , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral/analysis , BNT162 Vaccine , COVID-19/epidemiology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Child , Female , Follow-Up Studies , Humans , Immunization, Secondary , Incidence , Male , Middle Aged , SARS-CoV-2/immunology , Single-Blind Method , Treatment Outcome , Young Adult
20.
NPJ Vaccines ; 6(1): 44, 2021 Mar 25.
Статья в английский | MEDLINE | ID: covidwho-1343457

Реферат

Initial COVID-19 vaccine candidates were based on the original sequence of SARS-CoV-2. However, the virus has since accumulated mutations, among which the spike D614G is dominant in circulating virus, raising questions about potential virus escape from vaccine-elicited immunity. Here, we report that the D614G mutation modestly reduced (1.7-2.4-fold) SARS-CoV-2 neutralization by BNT162b2 vaccine-elicited mouse, rhesus, and human sera, concurring with the 95% vaccine efficacy observed in clinical trial.

Критерии поиска